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Abstract: This is the first of two papers aimed at economically capturing the collider phe-

nomenology of warped extra dimensions with bulk Standard Model fields, where the hierar-

chy problem is solved non-supersymmetrically. This scenario is related via the AdS/CFT

correspondence to that of partial compositeness of the Standard Model. We present a

purely four-dimensional, two-sector effective field theory describing the Standard Model

fields and just their first Kaluza-Klein/composite excitations. This truncation, while los-

ing some of the explanatory power and precision of the full higher-dimensional warped

theory, greatly simplifies phenomenological considerations and computations. We describe

the philosophy and explicit construction of our two-sector model, and also derive formulas

for residual Higgs fine tuning and electroweak and flavor precision variables to help iden-

tify the most motivated parts of the parameter space. We highlight several of the most

promising channels for LHC exploration. The present paper focusses on the most mini-

mal scenario, while the companion paper addresses the even richer phenomenology of the

minimal scenario of precision gauge coupling unification.
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1. Introduction

The known non-supersymmetric approaches to the Higgs fine-tuning problem (the Hierar-

chy Problem) in the Standard Model (SM) are ultimately based on the Higgs degrees of

freedom being composite at several TeV, either made from strongly-coupled constituents or

extended objects such as strings. This is a theoretically challenging arena where the stan-

dard tools of perturbative, renormalizable field theory have limited applicability. Nonethe-

less, it is important that experiments intelligently stand watch for new TeV-scale physics

realized in this manner.

In this regard, warped compactifications of higher-dimensional spacetime provide a

particularly attractive setting, for two reasons: (i) Their geometry can resolve the Hierar-

chy Problem non-supersymmetrically [1], (ii) When Standard Model fields are realized in

the higher-dimensional “bulk” [2], quantities of central phenomenological interest become

calculable in warped effective field theory, thereby describing Kaluza-Klein (KK) excita-

tions, flavor hierarchies [3 – 5], rare flavor-violating processes [4 – 6], electroweak precision

tests [7 – 11], gauge-coupling unification [12, 13], and dark matter [14]. Furthermore, this

scenario incorporates or generalizes key features of other approaches. Some of these are

extra-dimensional mechanisms, such as TeV-scale gravity [15, 16], Split Fermions [17], and

the Hosotani mechanism [18]. But there is also a deep equivalence or duality, AdS/CFT,

between this higher-dimensional physics and strongly-coupled, purely four-dimensional

physics [19 – 22]. In this way warped compactifications connect closely to the ideas of

TeV-scale strong dynamics, Technicolor [23] and Walking Technicolor [24, 25], Composite

Higgs [26, 27], Top-condensation [28, 29] and Topcolor [30], and partial compositeness [31].

Calculations in warped effective field theory, while doable, are not easy, and they

are certainly very difficult to automate by computer. The purpose of this paper and its

companion, is to provide a simplifying truncation of the kind of warped physics (with

“bulk” SM fields), or equivalent composite physics, that could solve the hierarchy prob-

lem, by describing only the SM particles and the first TeV-scale excitations carrying SM

charges. 1 This truncation reproduces the experimentally accessible new physics to good

approximation within purely four-dimensional effective field theory. Calculations are then

straightforwardly done using Feynman diagrams. The price of this truncation is that some

of the explanatory power of warped compactifications is lost. Enough is retained to show

1The lightest SM-neutral graviton and radion excitations of the original Randall-Sundrum model [1] are

less central to the phenomenology in the present context, but still interesting to consider. We have briefly

described their inclusion in appendix E.

– 2 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
4

how existing experimental data and bounds are satisfied, and how to identify the least

tuned and most promising regions of parameter space. Roughly, the truncation is achieved

by “deconstruction” [32] of the warped theory (discretization of the warped extra dimen-

sion) [33], making it appear as a variation on Little Higgs theory [34] (for a review see [35]).

This truncation is very closely related, via the AdS/CFT equivalence, to the strong inter-

actions approximation known as “vector meson dominance”, in particular as expressed in

the formalism of “hidden local symmetries” [36]. By this route, our work shares some

aspects of the BESS approach [37] to modelling the phenomenology of TeV-scale strong

dynamics, with however a tighter connection between the new states and the resolution of

the hierarchy problem. Similarly, our work also shares some features with the Technicolor

“straw man” models of refs. [38].

The model developed in this paper is the minimal one consistent with the data as

well the central organizing principle of partial compositeness [31]. It is closest to the TeV-

scale physics of the most viable and well-developed minimal warped models [8, 9]. The

models of the forthcoming companion paper additionally incorporate a simple and striking

mechanism for precision gauge-coupling unification [13], with and without a weak-scale dark

matter candidate [14]. Our view is that these models reflect grand principles, worthy of the

significant challenges they pose to experiments, and that they are a good point of departure

for thinking about how to optimize searches. But even if warped compactifications govern

TeV physics in Nature, it is not guaranteed that any of these models is accurate in every

detail. Fortunately, the simplicity of their structure makes them easy to adapt in the face

of new experimental facts.

Recently, similar deconstructed approaches to TeV-scale warped phenomenology have

been taken in refs. [39, 40]. The present paper has a similar electroweak structure to that

of ref. [40], but differs considerably in other aspects such as flavor structure.

In the next section, we will give a broad overview of the physics, suppressing technical

details, concluding with an outline of the remainder of the paper.

2. Overview

2.1 Two sectors

Let us sketch the central physics and how it is captured by the two physically equivalent

descriptions: four-dimensional strong dynamics, and higher-dimensional warped compact-

ification. We begin with the strong dynamics picture, where the theory is of the form

L = Lelementary + Lcomposite + Lmixing . (2.1)

There is a sector consisting of weakly-coupled elementary particles, described by Lelementary.

There is a second, strongly interacting sector resulting in a host of tightly bound composite

states, including the Higgs doublet, described by Lcomposite. The elementary sector cou-

plings are roughly gel ∼ 1. The intra-composite forces holding each composite together are

very strong, while the residual inter-composite couplings, g∗, are assumed to be weaker,2

2This is characteristic of of gauge theories with large numbers of colors.
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but still significantly stronger than the elementary couplings, 1 < g∗ ≪ 4π. Other than

the Higgs boson, the composites are taken to have typical masses, M∗, of very roughly TeV

scale.

2.2 Partial compositeness

These two sectors couple to each other via the interactions of Lmixing, which results pri-

marily in mass-mixing. Consequently, mass eigenstates are non-trivial superpositions of el-

ementary and composite particles. 3 The lightest mass eigenstates emerging from eq. (2.1)

are identified with the SM fields,

|SMn〉 = cos ϕn|elementaryn〉 + sin ϕn|compositen〉 , (2.2)

where the mixing angles ϕn parametrize the degree of “partial compositeness”. The or-

thogonal admixtures to eq. (2.2) constitute the mass eigenstates of the TeV-scale new

physics. When the mass-eigenstate particles interact, the composite components inter-

act among themselves with strength ∼ g∗, and the elementary components interact among

themselves with strength ∼ gel. This rough rule captures the essence of partially composite

phenomenology, which we will further elaborate on.

2.3 Warped picture

The warped compactification dual picture of the above physics is that the SM and heavy

excitations are interpreted as the Kaluza-Klein excitations of an extra-dimensional theory,

rather than describing them as mixtures of elementary and composite degrees of freedom.

In this way the warped picture more naturally works in terms of the mass eigenstates. It

is a deep and at first surprising result that the two apparently very different theoretical

descriptions are physically equivalent. Under favorable circumstances the warped picture

can give quantitative relations among the most important masses, mixing angles and cou-

plings needed for detailed phenomenology. By comparison, the composite picture gives a

clear qualitative understanding of many issues as well, but it is very difficult to pursue

phenomenology quantitatively.

2.4 Truncation

The truncation of this paper amounts to retaining just the minimal, lowest-lying set of

composite states needed in the SM admixtures. 4 Then, Lcomposite is taken to be a sim-

ple effective field theory for these states, while Lmixing is taken to be the general set of

3The SM itself contains examples of partial compositeness, where QCD represents the composite physics,

that may be more familiar to the reader. The SM Higgs vacuum expectation value (vev) and the QCD

chiral condensate both break the electroweak symmetry. As a result, a superposition of QCD-composite

pseudoscalars and Higgs pseudoscalars (mostly the latter) are eaten by the W , Z, while the orthogonal

superposition constitutes the observed light pions. A pion is predominantly QCD composite, with a tiny

admixture of Higgs pseudoscalar. Photon-ρ mixing is another example of partial compositeness. The

fermionic example of positron-proton mixing is forbidden in the SM by its accidental baryon-number sym-

metry, but a small mixing could take place if baryon symmetry is broken by non-SM physics such as grand

unification.
4There is an exception of one charged and one neutral additional massive vector mesons, needed to have

an approximate custodial symmetry to protect the electroweak T parameter [8].
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composite-elementary mixing mass terms (compatible with SM gauge invariance). The

mass eigenstates are then the SM states of eq. (2.2) and the orthogonal heavy states,

|heavyn〉 = − sin ϕn|elementaryn〉 + cos ϕn|compositen〉 . (2.3)

This leads to a simple, rough pattern of couplings between the SM and heavy states. Let us

consider the coupling strength for any three mass-eigenstate particles to interact, each of

which could be a SM particle or a heavy particle. Given the basic rule that three elementary

components interact with strength ∼ gel and three composite components interact with

strength ∼ g∗, one has

gSM1SM2SM3
∼ gel cos ϕ1 cos ϕ2 cos ϕ3 + g∗ sin ϕ1 sin ϕ2 sin ϕ3

gSM1SM2heavy3
∼ −gel cos ϕ1 cos ϕ2 sin ϕ3 + g∗ sin ϕ1 sin ϕ2 cos ϕ3

gSM1heavy2heavy3
∼ gel cos ϕ1 sinϕ2 sin ϕ3 + g∗ sin ϕ1 cos ϕ2 cos ϕ3

gheavy1heavy2heavy3
∼ −gel sin ϕ1 sin ϕ2 sin ϕ3 + g∗ cos ϕ1 cos ϕ2 cos ϕ3 . (2.4)

We now use these results to understand, again roughly, the pattern of mixing angles,

ϕ, needed in the real world, and the mechanism that has hidden TeV compositeness from

precision tests to date.

2.5 Compositeness and SM masses

The SM Higgs doublet is rather special in that it must be a full composite, with no el-

ementary component, in order to solve the Hierarchy Problem. That is: sin ϕHiggs = 1,

cos ϕHiggs = 0. From eq. (2.4) it follows that other (pairs of) SM particles couple to it

with strength ∼ g∗ sin ϕ1 sin ϕ2, which determines the extent to which they feel electroweak

symmetry breaking (EWSB), and the masses they acquire as a result. From this we deduce

that heavier SM particles are correlated with larger mixing angles. That is, the heavier SM

particles have higher partial compositeness, in the operational sense that they are more

strongly coupled to the new TeV-scale physics.

In this way the deep question of the origin of the large observed hierarchies in fermion

masses translates in the present scenario into the question of how to obtain large hierarchies

among ϕfermion. It is an attractive feature of the warped compactification scenario that

there is a straightforward mechanism for generating exponential hierarchies of just this

type. However, this explanatory power is lost in our truncation, and the mixing angles,

and the necessary hierarchies among them, are simply taken as inputs. This is a trade we

make in favor of simplifying collider phenomenology considerations.

2.6 Precision tests

The correlation of SM mass and compositeness helps explain why the virtual effects of

the new TeV physics have not already been seen in low-energy precision tests of the SM,

given that electroweak tests are in principle sensitive to heavy physics up to ∼ 10 TeV

and flavor-changing tests are sensitive to heavy physics up to ∼ 1000 TeV. Experimentally,

the maximum sensitivity applies to the lightest SM particles, but in the present scenario

– 5 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
4

the lightest particles, such as light quarks and leptons, have highly ϕ-suppressed couplings

to the new composite physics. For flavor physics, this safety mechanism generalizes the

Glashow-Iliopoulos-Maiani (GIM) mechanism of the minimal SM. In the appendices of this

paper we work out the key electroweak precision corrections due to the composite physics

as a function over the model parameter space, so that due consideration can be given to

electroweak precision tests. Flavor constraints are a bit less decisive due to the freedom of

parameters, but in appendix A we illustrate how and to what extent the generalized GIM

mechanism operates within our model.

2.7 New physics at colliders

Eq. (2.4) summarizes the challenges as well as the strategy for experimentally searching

for the heavy physics. Stronger couplings, g∗, at first seem promising for production of

the new physics. But consider the process of fusing light SM partons to produce a heavy

resonance,

A[SM1 + SM2 → heavy] ∝ g∗ϕ1ϕ2 cos ϕheavy − gel sin ϕheavy . (2.5)

The g∗ enhancement is (more than) erased by the ϕ1ϕ2 suppression. This makes it difficult,

but not impossible, to produce the heavy physics. The challenge will come from seeing these

events above background. Once produced, these resonances will mostly decay to the SM

states with the largest mixing angles, namely the heaviest SM particles. The efficiency

for identifying heavy SM particles, in particular the top and bottom quarks will be a key

determinant of our ability to find the new physics. But as we will discuss, there are also

special opportunities for discovery with their own special features, and these merit further

study.

The minimal non-supersymmetric scenario of partial compositeness will be challeng-

ing to discover at the Large Hadron Collider (LHC), given the regions of parameter space

allowed by precision tests. (The scenario with gauge coupling unification, discussed in the

companion paper to this one has more easily accessible physics.) This is one of the moti-

vations for the present paper: to make the physics as transparent as possible, to motivate

hard thinking on overcoming experimental obstacles, and to exploit special opportunities.

It is particularly important to have a practical measure on the parameter space to inform

searches of the most motivated regions. We discuss this next.

2.8 Residual Higgs fine tuning

In all known solutions to the Hierarchy Problem, there remains some tension between the

mechanism for solving the Higgs fine-tuning problem and the body of direct searches and

precision tests, so that in effect one is forced to live with some (more modest) residual

Higgs fine tuning [41]. This fact is often dubbed the “Little Hierarchy Problem”. In this

paper, we are not interested in tracking the residual fine tuning as a means of passing

judgement on our scenario or in order to debate whether or not it is better than others

in the literature. Rather, we want to use residual fine tuning to determine which regions

of our own parameter space are best motivated, that is, least tuned. We choose a simple
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measure of residual fine tuning for this purpose,

Fine tuning ∼ m2
h

δm2
h|mixing

. (2.6)

The smaller the above ratio, the more tuned a model is. We define δm2
h|mixing to be the

largest radiative correction to the physical Higgs mass squared that is sensitive to the

elementary sector via Lmixing. This has to be cancelled (tuned) against the tree-level Higgs

mass to give the desired mh.

A useful and elegant feature of our truncated model (and fuller descriptions) is that the

leading contributions to this tuning are insensitive to the ultraviolet (UV) cutoff, ΛUV , and

unambiguously calculable at one loop. Mostly, this result follows by simple power-counting.

Radiative corrections to the Higgs mass squared that are sensitive to the elementary sector

must proceed via some virtual fluctuation from a composite to an elementary field and

back to composite. These fluctuations go through the mass-mixing interactions of Lmixing,

which are at most of order of the composite masses, M∗, so that

δm2
h|mixing ∝ M2

∗ × mixing angles , (2.7)

with at most logarithmic sensitivity to ΛUV . In detail, even this log ΛUV is absent for the

dominant corrections in our final model. In section 8, the UV-finite fine tuning is simply

computed as a function over parameter space.

One may wonder about radiative corrections to the Higgs mass entirely originating

from the composite dynamics (that is, not going through Lmixing). In fact, in our truncated

model such contributions are even larger than δm2
h|mixing. However, we do not count their

effect on fine tuning because we expect they would be minimized by extra structure in

a fuller description of the composite sector. The classic example is when the Higgs is

realized as a composite pseudo-Goldstone boson [26], such as the ordinary pion of QCD,

or the AdS/CFT dual description in extra dimensions [27, 9], but there may be other

mechanisms as well which deserve further exploration.

2.9 Full tR compositeness

The heaviest SM particle, the top quark, requires sizeable mixing angles, ϕtL,tR . In fact,

since the electroweak gauge symmetry implies ϕtL = ϕbL
, and the bL has already been

sensitively tested, we must conclude that this angle is smaller, and, to compensate, ϕtR

is maximal. (A possible exception is if the composite sector has an enlarged custodial

symmetry, a discrete subgroup of which protects the Zbb̄ couplings from receiving large

corrections [11]. In such case ϕtL can be large and ϕtR less than maximal.) Maximal

ϕtR not only blurs the physical distinction between elementary and composite states, it

also implies that quantum loops involving a virtual tR result in severe Higgs fine tuning.

There is a natural way out of this difficulty, namely if the tR is in fact a fully-fledged

member of the composite sector, without any elementary component. It is then an integral

part of the dynamics that produces the light Higgs composite, rather than a large outside

destabilizing perturbation. This is reminiscent of top-condensate [28, 29] and Topcolor [30]

models, where the Higgs is realized as a composite of strong top quark interactions.

– 7 –
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2.10 The error of our ways

This paper gives a truncated model describing the SM and the lowest-lying new excitations,

with mass scale M∗, with a parametrically larger UV cutoff scale, ΛUV . However, in

the full descriptions of warped compactifications or composite models the next-to-lowest

excitations typically have masses M∗∗ which are not much bigger. Standard effective field

theory power-counting suggests that the truncated description thereby incurs errors of

order (E/M∗∗)
2, where E is the energy of a process under consideration. Since we want to

consider energies large enough to create the first excitations, E ∼ M∗, we can expect errors

of order (M∗/M∗∗)
2. Now, it is possible that there is a significant hierarchy between M∗

and M∗∗ in warped compactifications, suppressing these errors, if there is suitable structure

on the “infrared boundary”. In this case our truncated model could be a rather precise

effective field theory where we are simply taking ΛUV ∼ M∗∗. However the simplest infrared

boundary conditions typically yield M∗∗ ∼ 2M∗, suggesting errors of order 1/4. In fact in

these cases there are towers of several resonances with masses M∗∗ ∼ 2M∗,M∗∗∗ ∼ 3M∗,

. . . , and the combined error from dropping all these higher excitation can be ∼ 1/4+1/9+

. . . ∼ 1/2. This rough expectation is borne out by comparison of precision corrections

within the truncated model (as in our appendices) and warped effective field theory.

This size of error may seem at first sight rather large, but the virtual effects of the M∗∗

and higher states are confined to already small corrections low-energy precision variables or

small corrections to non-resonant M∗-scale cross-sections. These corrections are frequently

of order the experimental errors or equivalent to shifts in the parameters of the model. The

qualitative agreement, and rough quantitative agreement, between the truncated model and

warped compactifications makes the truncated model a very useful “reconnaissance tool”

for our initial experimental forays into the new physics.

It should be stressed that the truncation procedure we employ for low-lying excitations,

essentially discretization or “deconstruction” of the warped extra dimension, is part of a

systematically improvable procedure where one makes finer and finer discretizations. In

practice this proliferates the number of sectors in the model (excitation levels) and rapidly

the continuum description becomes more efficient for calculation.

This concludes our non-technical overview of the relevant physics. The rest of our

paper elaborates in a more quantitative way on what has been sketched so far, introducing

a minimal model that gives the simplest realization of partial compositeness consistent

with present data. More elaborate models can be built which are even more successful with

precision tests (thus resulting in a lighter spectrum of new particles), for example by fully

describing the composite Higgs as a Goldstone boson of the strong dynamics, and assuming

a discrete custodial symmetry in the composite sector to relax the Zbb̄ constraint [11].

We have however preferred to adopt a minimal realization of partial compositeness, thus

favoring slight tunings of parameters over more natural, but more involved, model building

solutions.

Sections 3 and 4 introduce the two halves of our two-sector model, the “elementary

sector” and “composite sector”, isolated from each other for simplicity. The status of

the Higgs doublet as part of the composite sector is defined. Section 5 introduces the

– 8 –
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couplings between the two sectors in the form of mass-mixing. The Lagrangian is then

mass-diagonalized for phenomenological use. Section 6 describes the impact of electroweak

symmetry breaking on the masses and couplings of the new physics. Section 7 makes the

case that the tR should be a composite on par with the Higgs doublet, and shows how

to simply implement this technically. In section 8, it is shown that the dominant radia-

tive corrections to the Higgs mass from the elementary sector are UV-finite. These finite

corrections are then used to estimate Higgs fine tuning as a function of parameter space.

Section 9 uses the formulas for the new-physics contributions to flavor and electroweak

precision variables computed in the appendices A, B and C to sketch the best motivated

regions of the parameter space. Section 10 discusses the most promising channels and

strategies to discover the new TeV states at the LHC. Finally, appendix D estimates the

maximal energy to which the model is internally consistent, and shows that this is well

above upcoming experimental reach. Appendix E briefly describes the inclusion within the

composite sector of the SM-neutral graviton and radion excitations of the Randall-Sundrum

model.

3. Elementary sector

In this section we define the first building block of our minimal two-site model of partial

compositeness: the elementary sector. Its field content corresponds precisely to that of

the SM, but with the notable exception of the Higgs field. Indeed, the elementary fields

will ultimately constitute the dominant component of the physical SM fermions and gauge

bosons. The elementary gauge fields, corresponding to adjoints of the elementary gauge

group [SU(3)c ⊗ SU(2)L ⊗ U(1)Y ]el, are denoted by

Aµ ≡ {Gµ,Wµ,Bµ} . (3.1)

The SM electroweak doublet fermions are denoted by

ψL ≡ {qLi = (uLi, dLi), ℓLi = (νLi, eLi)} , i = 1, 2, 3 , (3.2)

or by their more individual names such as tL, νeL, µL. The SM electroweak singlet fermions

are denoted by 5

ψ̃R ≡ {uRi, dRi, νRi, eRi} . (3.3)

The only renormalizable interactions in this sector are gauge interactions,

Lelementary = −1

4
F 2

µν + ψ̄Li 6DψL +
¯̃
ψRi 6Dψ̃R . (3.4)

The associated gauge couplings, gel 1, gel 2, gel 3, will turn out to be approximately, but

not exactly, equal to the measured SM gauge couplings, g1, g2, g3. For technical reasons

5The collective symbol ψ̃R is deliberately redundant. Normally, right-handed SM fermions are assumed

to be electroweak singlets. Here, we additionally use the tilde to denote this fact and conform with our

notation for the composite sector, where both chiralities of electroweak singlets ultimately appear.
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discussed below, it is more convenient to use the standard SO(10) grand unified theory

(GUT) convention for the hypercharge

g1 ≡
√

5

3
gY , YGUT ≡

√

3

5
Y , (3.5)

where gY and Y denote the hypercharge coupling and hypercharge generator in the usual

SM convention, and YGUT is defined by eq. (3.5).

The elementary sector gauge dynamics obviously makes sense in isolation to the highest

scales, say the Planck scale. Non-renormalizable operators made of elementary fields, like

for example flavor and CP violating four-fermion interactions, will be strongly suppressed

and thus negligible. Any effect of flavor and CP violation must therefore come from the

composite sector and proceed through its interactions with the elementary fields.

4. Composite sector

The composite sector comprises the Higgs plus what is essentially an “excited” copy of the

SM fermions and gauge bosons. The basic role of these excitations is to provide a small

composite component to the physical SM fermions and gauge bosons, which determines the

extent to which the latter couple to the Higgs and eventually feel electroweak symmetry

breaking. This would naively suggest, in particular, that the massive vector excitations ρµ

should correspond to an adjoint of SU(3) ⊗ SU(2) ⊗ U(1). However, in order to protect

the electroweak T parameter as discussed below, the composite bosons must respect a

larger symmetry, minimally [SU(3) ⊗ SU(2) ⊗ SU(2) ⊗ U(1)]. In a controlled effective field

theory, massive vector mesons must always be realized as gauge bosons of a broken gauge

group. We therefore take the ρµ as gauge bosons (hence adjoint representations) of a group

[SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X ]comp. The SM Higgs field is assumed to transform as

a real bidoublet (H̃,H) under [SU(2)L ⊗ SU(2)R]comp, while the quantum numbers that

we adopt for the massive fermion excitations, χ, χ̃, are those given in table 1. 6

The composite dynamics is then summarized by

Lcomposite = −1

4
ρ2

µν +
M2

∗

2
ρ2

µ + |DµH|2 − V (H)

+χ̄(i 6D − m)χ + ¯̃χ(i 6D − m̃)χ̃ − χ̄
(

Y∗uH̃χ̃u + Y∗dHχ̃d
)

+ h.c. , (4.1)

where χ̃u ≡ {Ũ , Ñ}, χ̃d ≡ {D̃, Ẽ}. The ρµ mass terms clearly break the composite gauge

invariance completely. Technically, one can imagine that this is due to a Higgs mecha-

nism (distinct from the electroweak Higgs mechanism) in which the associated Goldstone

bosons have been eaten by the massive ρ’s (that is, we are in unitary gauge), and other

related massive fluctuations are omitted because their masses are at the cutoff scale of our

composite effective field theory description. The perturbativity of our effective description

then implies an upper bound on this cutoff, which we estimate in appendix D. It can be

6The factor of
p

3/2 in the U(1)X charges comes from the relation YGUT =
`

T 3R + ξ TX

´

/
p

1 + ξ2,

where ξ =
p

2/3 and T 3R = 0 for all the fermions. See section 4.1 for more details.
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SU(3)c SU(2)L SU(2)R U(1)X

ρµ Gauge Fields

(H̃,H) 1 2 2 0

χ
Q 3 2 1 1

6
·
√

3
2

L 1 2 1
(

−1
2

)

·
√

3
2

χ̃

Ũ 3 1 1 2
3
·
√

3
2

D̃ 3 1 1
(

−1
3

)

·
√

3
2

Ñ 1 1 1 0

Ẽ 1 1 1 (−1) ·
√

3
2

Table 1: Field content and quantum numbers in the composite sector of the two-site minimal

model.

large enough so that unspecified physics at this scale decouples from precision constraints

on the model as well as collider search considerations. Closer inspection shows that the

Yukawa couplings further break the gauge invariance, and this is also taken into account

in appendix D in estimating the maximal cutoff.

The mass parameters and couplings of Lcomposite are chosen so that the purely bosonic

subsector has an [SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X ] global symmetry, while the Yukawa

couplings break this down to an [SU(3)c ⊗ SU(2)L ⊗ U(1)] global symmetry. As mentioned

above, the higher bosonic symmetry will be important in protecting the electroweak T

parameter. It might at first seem unnatural to have a subsector of a theory enjoy a higher

symmetry than the full theory, but in the present context it is technically natural be-

cause of the following observation. The Yukawa couplings do break the SU(2)R symmetry,

group-theoretically by ∆IR = 1/2. But (SU(2)R)-breaking in M2
∗ (while preserving the

total [SU(3)c ⊗ SU(2)L ⊗ U(1)] symmetry) is necessarily ∆IR = 2. Thus, quadratically

divergent (SU(2)R)-breaking radiative corrections to M2
∗ due to the Yukawa couplings are

proportional to Y 4
∗ and arise at three (composite) loops. With the cutoff estimates of ap-

pendix D and composite couplings large but still in the perturbative range, g∗, Y∗ ≪ 4π,

this breaking is negligible for our purposes. Finally, the Lagrangian Lcomposite is assumed

to have a parity symmetry for simplicity, which means equal Yukawa couplings for both

chiralities of the massive fermions.

Having sketched the composite dynamics and symmetry realizations, we will now dis-

cuss the fields and couplings in greater detail.

4.1 Vector mesons

In principle, the couplings g∗ and the masses M∗ of the vector mesons could be distinct for
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each simple subgroup of [SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X ]comp. In the present paper

we will assume, purely for convenience, that these couplings are the same for the SU(2)R ⊗
U(1)X subgroup of the composite gauge group. We thereby assign the parameters (g∗,M∗)1,

(g∗,M∗)2, and (g∗,M∗)3 to the SU(2)R ⊗ U(1)X , SU(2)L, and SU(3)c composite gauge

groups. As a further simplification in subsequent numerical estimates and calculations, we

will assume that all the M∗ i are similar, and that all the composite couplings are similar

and moderately large, roughly 2 < g∗ i < 4.

We subdivide the vector mesons into those that will ultimately mix with the elementary

gauge bosons, ρ∗µ, and those that will not, ρ̃µ:

ρµ = {ρ∗µ, ρ̃µ} . (4.2)

The ρ∗µ transform as an adjoint of the exact global symmetry [SU(3) ⊗ SU(2)L ⊗ U(1)Y ],

while the ρ̃µ form an orthogonal combination:7

ρ∗µ = {G∗
µ,W ∗

µ ,B∗
µ} , ρ̃µ =

{

W̃±
µ ≡ W̃1 ∓ i W̃2√

2
, B̃µ

}

. (4.3)

We associate the generators T 1R, T 2R to the fields W̃ 1, W̃ 2 and TB∗ ≡ YGUT = (T 3R +

ξ TX)/
√

1 + ξ2, TB̃ = (T 3R−ξ TX)/
√

1 + ξ2 respectively to B∗ and B̃. We choose ξ =
√

2/3

to match the SO(10) GUT normalization. In this way the generator of the exactly preserved

global U(1) is just the hypercharge in SO(10) GUT normalization (i.e. YGUT =
√

3/5 Y ).

This choice of normalization also allows us to have symmetric expressions for all gauge

bosons after mass diagonalization as seen in section 5.

4.2 The Higgs field

The SM Higgs field is assumed to be entirely a composite of the new strong dynamics at

TeV scales. Its bi-doublet transformations under [SU(2)L⊗SU(2)R]comp are simply written

by expressing the Higgs in 2 × 2 matrix form,

(H̃,H) → L (H̃,H)R† , (4.4)

where H is the usual SM Higgs doublet field for the down-type Yukawa couplings and

H̃ = iσ2H∗ for the up-type Yukawa couplings. The classical Higgs potential has the usual

SM form,

V (H) ≡ −µ2
H |H|2 + λH |H|4 , (4.5)

and is [SU(2)L ⊗ SU(2)R]comp-invariant.

A critical assumption we will make is that a fuller description of the composite dy-

namics (neglecting other sectors such as the elementary sector) would make V (H) ≡ 0

natural (for example, if the Higgs were realized as a Goldstone boson) and that there may

in addition be perturbing dynamics in the composite sector that yield a non-vanishing but

weak potential,

µH < TeV , λH ∼ 1 . (4.6)

7Our notation for the excited hypercharge boson is chosen so as not to clash with that of the excited

bottom quark discussed in section 4.3.

– 12 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
4

That is we will use this simple classical V (H) to stand for the fully renormalized effective

potential due to the composite dynamics alone, and assume that the desired values of

µH , λH require no tuning before radiative corrections from the elementary sector is taken

into account. Those radiative corrections to the Higgs potential that are external to the

composite sector will determine our measure of fine tuning.

It is important to note that these radiative corrections from the elementary sector must

also be added to the purely composite potential above, V (H), to determine the full Higgs

effective potential, in particular the Higgs VEV and physical Higgs mass.

4.3 Composite fermions

The composite fermions parallel the SM fermions closely, except for the fact that they are

massive Dirac fermions, rather than Weyl fermions. There are three generations of SU(2)L
doublet composite Dirac fermions, denoted by

χ ≡ {Qi = (Ui,Di), Li = (Ni, Ei)} , (4.7)

or by more familiar names such as (T,B), Nµ, Eτ . The SU(2)L singlet composite Dirac

fermions are denoted by

χ̃ ≡ {Ũi, D̃i, Ñi, Ẽi} , (4.8)

or by even more familiar names such as T̃ , B̃, Ñµ, Ẽτ . Since the composite fermions have

SU(2)L doublets and singlets with both left- and right-handed Lorentz representations,

we use the presence of a tilde to denote the singlets, while we use subscripts “L,R” to

denote the Lorentz representation. So, for example, “C̃L”, denotes the left-handed Lorentz

chirality of the SU(2)L-singlet “charmed” composite quark.

The Yukawa couplings between SU(2)L singlets and doublets are denoted by

Y∗u = {Y∗U , Y∗N}, Y∗d = {Y∗D, Y∗E} . (4.9)

We are assuming for simplicity that Lcomposite has a parity symmetry, which means equal

Yukawa couplings for both chiralities of the massive fermions. Here Y∗u, Y∗d are matrices

in ordinary generational space, which we also take to be stronger and less hierarchical than

their SM equivalents, 1 < Y∗u,d . 3, again a reflection of the strong dynamics creating the

composites. The Dirac mass terms, m, m̃ are free parameters of the model. They respect

the [SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X ] global symmetry of the composite sector, and are

independent for each representation of massive fermions. Purely for technical simplicity, we

further require these mass terms to be predominantly diagonal 3×3 matrices in generation

space. That is, we are taking the composite Yukawa couplings to be the dominant source

of breaking of generational U(1) symmetries. Subdominantly, radiative corrections from

Yukawa couplings will necessarily make the mass terms off-diagonal, but this will not play

an important role.
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5. Partial compositeness

Partial compositeness is realized by adding a set of mass-mixing (soft mixing) terms to our

model,

Lmixing = −M2
∗

gel

g∗
Aµρ∗µ +

M2
∗

2

(

gel

g∗
Aµ

)2

+ (ψ̄L∆χR +
¯̃
ψR∆̃χ̃L + h.c.) , (5.1)

where an implicit sum over all species of gauge and fermionic fields is understood.

5.1 Residual standard model gauge invariance

The vector boson terms reflect the gauging of the global symmetry group of the composite

sector of section 4 by the elementary gauge symmetry. This looks somewhat unfamiliar

because the (broken) ρ gauge symmetry is being treated in unitary gauge. Indeed, it is

straightforward to check that the sum of the vector mass terms in eqs. (4.1), (5.1) is of the

form

M2
∗

2

(

ρµ − gel

g∗
Aµ

)2

,

and that the entire Lagrangian, eq. (2.1), is exactly invariant under an SU(3)⊗SU(2)⊗U(1)

gauge symmetry which we identify with the final SM gauge symmetry. The corresponding

SM gauge fields are then superpositions

g∗
√

g2
el + g2

∗

Aµ +
gel

√

g2
el + g2

∗

ρ∗µ , (5.2)

and the SM gauge couplings have the form

g =
gel g∗

√

g2
el + g2

∗

≃ gel , for gel ≪ g∗ . (5.3)

The non-trivial superposition of Aµ and ρ∗µ inside the SM gauge field is the vector meson

version of partial compositeness. In the literature of low-energy hadronic phenomenology

the analogous phenomenon is known as “photon-ρ” mixing.

The fermionic terms in eq. (5.1) describe fermionic partial compositeness in terms

of mixing-mass parameters ∆, ∆̃, which are independent for each fermionic SM gauge

representation (or, equivalently, for each species of massive fermion). In the interest of

simplicity, they are chosen to be diagonal in the same basis as the m and m̃ are, in

generation space. They explicitly break the separate elementary and composite gauge

symmetries of the ρµ and Aµ but preserve the SM gauge invariance discussed above. The

mass-mixing of elementary chiral fermions with composite Dirac fermions necessarily results

in a new set of massless chiral fermions, which are linear combinations of the original χ

and ψ, and are identified with the SM fermions.
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5.2 Mass eigenstates

Most phenomenological aspects of the model related to the production and detection of

the new massive particles at the colliders are better pursued in the canonical language of

diagonalized mass and kinetic terms. We diagonalize the mass mixing arising from Lmixing

by field transformations:
(

Aµ

ρ∗µ

)

→
(

cos θ − sin θ

sin θ cos θ

)(

Aµ

ρ∗µ

)

, tan θ =
gel

g∗
, (5.4)

(

ψL

χL

)

→
(

cos ϕψL
− sinϕψL

sin ϕψL
cos ϕψL

)(

ψL

χL

)

, tan ϕψL
=

∆

m
, (5.5)

(

ψ̃R

χ̃R

)

→
(

cos ϕψ̃R
− sinϕψ̃R

sin ϕψ̃R
cos ϕψ̃R

)(

ψ̃R

χ̃R

)

, tan ϕψ̃R
=

∆̃

m̃
. (5.6)

Our notation above has been chosen to be economical with symbols. Before the diagonal-

ization, “Aµ, ψL, ψ̃R” denoted the elementary fields and “ρ∗µ, ρ̃µ, χ, χ̃” the composite fields.

After the diagonalization, “Aµ, ψL, ψ̃R” denote the SM fields, which are massless before

EWSB, while “ρ∗µ, ρ̃µ, χ, χ̃” denote new-physics mass eigenstates (before EWSB).

The mixing angles relating the elementary/composite basis to the mass basis (before

EWSB) now parametrize partial compositeness. Note that all the mixing angles are real

and there is one for every SM multiplet,

θ ≡ θ1, θ2, θ3

ϕψL
≡ ϕqLi

, ϕℓLi

ϕψ̃R
≡ ϕuRi

, ϕdRi
, ϕνRi

, ϕeRi
. (5.7)

The indices for θ refer to the SU(3) ⊗ SU(2) ⊗ U(1) factors of the SM gauge group, while

the ‘i’ indices on the ϕ = {ϕψL
, ϕψ̃R

} are generational.

5.3 Diagonalized lagrangian

Implementing the transformation above in the total Lagrangian,

L = Lgauge + Lfermion + LHiggs , (5.8)

gives:

Lgauge = −1

4
F 2

µν +
1

2
(DµρνDνρµ − DµρνDµρν) +

M2
∗1

2
ρ̃2

µ +
M2

∗

2 cos2 θ
ρ∗ 2

µ +
ig

2
Fµν [ρµ, ρν ]

+2ig cot 2θ Dµρ∗ν [ρ
∗
µ, ρ∗ν ] +

ig1

sin θ1
Dµρ̃ν [ρ̃µ, ρ̃ν ]

+ig1 cot θ1 Dµρ∗ν [ρ̃µ, ρ̃ν ] + ig1 cot θ1 Dµρ̃ν

(

[ρ∗µ, ρ̃ν ] + [ρ̃µ, ρ∗ν ]
)

+
g2

4

(

sin4 θ

cos2 θ
+

cos4 θ

sin2 θ

)

[ρ∗µ, ρ∗ν ]2 +
g2
1

4 sin2 θ1

[ρ̃µ, ρ̃ν ]2

+
g2
1

4
cot2 θ1

(

[ρ∗µ, ρ̃ν ] + [ρ̃µ, ρ∗ν ]
)2

+ g2
1

cos θ1

sin2 θ1

[ρ̃µ, ρ̃ν ][ρ
∗
µ, ρ̃ν ] , (5.9)
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Lfermion = ψ̄Li 6DψL + χ̄(i 6D − m∗)χ

+ψ̄L

[

g
(

sin2 ϕψL
cot θ − cos2 ϕψL

tan θ
)

ρ∗µ +
g1

sin θ1
sin2 ϕψL

ρ̃µ

]

γµψL

+ψ̄L

(

g
sin ϕψL

cos ϕψL

sin θ cos θ
ρ∗µ +

g1

sin θ1
sin ϕψL

cos ϕψL
ρ̃µ

)

γµχL + h.c.

+χ̄L

[

g
(

cos2 ϕψL
cot θ − sin2 ϕψL

tan θ
)

ρ∗µ +
g1

sin θ1

cos2 ϕψL
ρ̃µ

]

γµχL

+χ̄R

(

g cot θ ρ∗µ +
g1

sin θ1
ρ̃µ

)

γµχR

+{L ↔ R ; χ → χ̃ ; ϕψL
→ ϕψ̃R

; m∗ → m̃∗} , (5.10)

LHiggs = |DµH|2 − V (H) + H†i g cot θ ρ∗µDµH + h.c.

−i
g1

2 sin θ1

(

1√
2

H̃†W̃−
µ DµH +

1√
2

H†W̃+
µ DµH̃ −

√

3

5
H†B̃µDµH

)

+ h.c.

−g1g
cot θ

sin θ1

(

1√
2

H̃†ρ∗µW̃−
µ H +

1√
2

H†ρ∗µW̃+
µ H̃ −

√

3

5
H†ρ∗µB̃µH

)

+H†

{

(

g cot θ ρ∗µ
)2

+
g2
1

sin2 θ1

(

1

2
W̃+

µ W̃−
µ +

3

20
B̃2

µ

)}

H

−
(

sinϕψL
ψ̄L + cos ϕψL

χ̄L

)

[

Y∗uH̃
(

sin ϕψ̃u
R

ψ̃u
R + cos ϕψ̃u

R
χ̃u

R

)

+Y∗dH
(

sin ϕψ̃d
R

ψ̃d
R + cos ϕψ̃d

R
χ̃d

R

) ]

+ h.c.

−χ̄RY∗uH̃χ̃u
L − χ̄RY∗dHχ̃d

L + h.c. , (5.11)

where ψ̃u
R ≡ {uR, νR}, ψ̃d

R ≡ {dR, eR}, and, we recall, χ̃u ≡ {Ũ , Ñ}, χ̃d ≡ {D̃, Ẽ}. In

eqs. (5.9), (5.10) and (5.11), all covariant derivatives of fermions and heavy gauge bosons

are now with respect to the unbroken SM gauge group,

Dµ ≡ ∂µ − igAµ , g = g∗ sin θ , (5.12)

and

m∗ ≡
√

∆2 + m2 , m̃∗ ≡
√

∆̃2 + m̃2 . (5.13)

All vector fields in eqs. (5.10) and (5.11), (including those in the covariant derivatives) are to

be considered in a matrix notation, i.e. each gauge component multiplies its corresponding

generator T a, normalized according to the standard convention (Tr(T aT b) = δab/2 for

the non-abelian generators). The only exception is for W̃± and B̃ in eq. (5.11), which

are component fields. This complication arises as a result of the subtle transformation

of the Higgs under [SU(2)R]comp. In the gauge Lagrangian (5.9) we adopt a different

notation: gauge fields are still in matrix notation, with an implicit trace operation over the

whole Lagrangian, but with the following normalization: Tr(T aT b) = δab for non-abelian

generators, T = 1 for the abelian ones. This choice leads to a more compact and simple-to-

read expression, compared to the standard normalization or the use of component fields.

Gauge couplings, mixing angles and masses of the heavy gauge bosons without explicit
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indices must be understood as collective symbols (see eq. (5.7) as well):8

g = {g3, g2, g1}, M∗ = {M∗3,M∗2,M∗1} , (5.14)

and similarly for the masses and Yukawa couplings of the heavy fermions (see also eq. (21)):

m∗ ≡ {mQ
∗ ,mL

∗ } , m̃∗ ≡ {m̃U
∗ , m̃D

∗ , m̃N
∗ , m̃E

∗ } . (5.15)

With the definitions of the collective symbols of the fields, eqs. (4.3), (4.7) and (4.8), all

terms in the action after mass diagonalization can be easily decoded by summing over the

implicit indices.

The effective field theory (EFT) of eqs. (5.9)–(5.11) describes the SM field content

plus a set of heavy gauge and fermionic excitations. Its only exact gauge invariance is that

of the SM gauge symmetry, as one can easily check by noticing that the SM gauge fields

couple to the heavy fields only through SM covariant derivatives and field strengths. The

(leading) terms of the SM Lagrangian, interpreted as the low-energy effective limit of the

Lagrangian (5.8) below m∗, m̃∗, M∗, then follow by setting to zero all terms in eq. (5.8)

that involve the heavy fields. The SM Yukawa couplings, Y , are written in terms of the

composite Yukawa couplings, Y∗, as follows:

(Yu)ij = sin ϕqLi
(Y∗U )ij sin ϕuRj

(Yd)ij = sin ϕqLi
(Y∗D)ij sin ϕdRj

,

(Yν)ij = sin ϕℓLi
(Y∗N )ij sinϕνRj

(Ye)ij = sin ϕℓLi
(Y∗E)ij sin ϕeRj

,
(5.16)

where there is no sum on repeated indices. Note that the SM Yukawas are off-diagonal

and hierarchical, while those before the mass diagonalization are off-diagonal and non-

hierarchical. Using eq. (5.16), the mass-diagonalized Lagrangian (5.8) can be written in

terms of all the SM parameters (gauge and Yukawa couplings plus the Higgs quartic cou-

pling and mass term), as well as mixing angles for each SM particle and heavy-physics

mass scales, m∗, m̃∗,M
2
∗ .

5.4 Parameter space beyond the standard model

Now that we have presented the diagonalized Lagrangian containing the SM and a set of

heavy fields with which the SM particles interact, we comment briefly on the extended

parameter space of the model. We began with a model described by the theoretical param-

eter space of the elementary and composite sectors, {gel, g∗, Y∗,m, m̃,∆, ∆̃,M∗, λH , µH}.
After diagonalizing, we are left with a Lagrangian written in terms of the parameters of

the Standard Model, {g, Y, λH , µH}, plus a set of mixing angles {θ, ϕ, ϕ̃} and masses of the

new heavy states {m∗, m̃∗,M∗}. Thus, we can think of the mixing angles and the heavy

masses as new parameters which can be varied to explore the parameter space subject to

the constraints:

g = g∗ sin θ , (5.17)

(YSM )ij = sin ϕψLi
(Y∗)ij sin ϕψRj

, (5.18)

8As declared in section 4.1, we are assuming for simplicity a common mass parameter M∗1 for W̃±, B̃,

and B
∗.
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and our assumption that the composite sector is more strongly coupled than the elementary

sector:

g∗, Y∗ ∼ 1 − 4 . (5.19)

6. EWSB

After EWSB, mass terms proportional to the Higgs vev mix different states, and a further

diagonalization is needed. In the electroweak unitary gauge, the charged and neutral gauge

mass matrices are:

W+
µ W ∗+

µ W̃+
µ

M2
± =

1

4



















g2
2v

2 g2
2v

2 c2

s2

−g1g2v
2 1

s1

g2
2v

2 c2

s2

4M2
∗2

c2
2

+ g2
2v

2 c2
2

s2
2

−g1g2v
2 c2

s1s2

−g1g2v
2 1

s1
−g1g2v

2 c2

s1s2
4M2

∗1 + g2
2v

2 1

s2
2



















W−
µ

W ∗−
µ

W̃−
µ

(6.1)

W 3
µ Bµ W ∗ 3

µ B∗
µ B̃µ

M2
0 =

1

4









































g2
2v

2 −gY g2v
2 g2

2v
2 c2

s2
−gY g2v

2 c1

s1
−gY g2v

2 1

s1

−gY g2v
2 g2

Y v2 −gY g2v
2 c2

s2

g2
Y v2 c1

s1

g2
Y v2 1

s1

g2
2v2 c2

s2
−gY g2v

2 c2

s2

4M2
∗2

c2
2

+g2
2v

2 c2
2

s2
2

−gY g2v
2 c1c2

s1s2
−gY g2v

2 c2

s1s2

−gY g2v
2 c1

s1
g2
Y v2 c1

s1
−gY g2v

2 c1c2

s1s2

4M2
∗1

c2
1

+g2
Y v2 c2

1

s2
1

g2
Y v2 c1

s2
1

−gY g2v
2 1

s1

g2
Y v2 1

s1

−gY g2v
2 c2

s1s2

g2
Y v2 c1

s2
1

4M2
∗1+g2

Y v2 1

s2
1









































W 3
µ

Bµ

W ∗ 3
µ

B∗
µ

B̃µ

(6.2)

where v = 246 GeV, s1,2 ≡ sin θ1,2, c1,2 ≡ cos θ1,2, and we have expressed eq. (6.2) in terms

of gY =
√

3/5 g1 instead of g1 to have a more easy-to-read expression. The fermionic mass

matrices for up and down states are:

uL UL ŨL

MU =

















Yu
v√
2

c

s
Yu

v√
2

0

0 mQ
∗ s−1Yu s̃−1

u

v√
2

Yu
c̃u

s̃u

v√
2

c

s
Yu

c̃u

s̃u

v√
2

m̃U
∗

















uR

UR

ŨR

(6.3)

– 18 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
4

dL DL D̃L

MD =

















Yd
v√
2

c

s
Yd

v√
2

0

0 mQ
∗ s−1Yd s̃−1

d

v√
2

Yd
c̃d

s̃d

v√
2

c

s
Yd

c̃d

s̃d

v√
2

m̃D
∗

















dR

DR

D̃R

(6.4)

where we have defined s ≡ sin ϕuL
, c ≡ cos ϕuL

; s̃u,d ≡ sin ϕuR,dR
, c̃u,d ≡ cos ϕuR,dR

, and

Yu, Yd are the up- and down-type SM Yukawa couplings defined by eq. (5.16).

In general it is best to proceed numerically for any choice of model parameters in

diagonalizing the above mass matrices, and rewriting the Lagrangian of eq. (5.8) in terms of

the resultant mass-eigenstate fields, thereby obtaining the final interaction vertices for the

bottom-line mass eigenstates. In the case of the gauge mass matrices, however, a reasonable

approximation consists in treating the EWSB corrections as small perturbations, and work

at leading order. This is consistent since the EWSB terms are smaller than the mass

splitting in the heavy-heavy sector. In the fermionic mass matrices this is not true in

general, and a full diagonalization is therefore needed. A further complication comes from

the fact that each of the elements of MU , MD is actually a 3 × 3 matrix in flavor space.

Depending on the flavor structure of the composite Yukawa matrices Y∗, which in turn

must combine with the sin ϕ to yield realistic SM Yukawa couplings, a full diagonalization

might be needed only generation by generation, or worst case for the whole 9× 9 fermionic

matrices. The first possibility occurs if Y∗ is approximately diagonal in flavor space, maybe

as the result of a flavor symmetry of the composite sector. No simplification is instead

possible in the opposite, extreme case of anarchic Y∗, that is if all entries of Y∗ are of the

same order and large. Quite interestingly, these two different realizations of flavor could

be experimentally distinguishable at future colliders. We will discuss this in section 10.

7. Full tR compositeness

We have already said that the size of the SM Yukawa couplings is controlled, in our model,

by the size of the composite Yukawas Y∗ and by the degree of compositeness of the fermion

mass eigenstates, eq. (5.16). In the particular case of the top quark, we have:

Ytop = sinϕtL (Y∗U33) sin ϕtR . (7.1)

Simple inspection of this formula shows that the (large) SM top Yukawa coupling can

be reproduced only if the mixing angles of tR and tL are not both too small. We are

assuming that (Y∗U33) is not too strong, say Y∗U33 . 3, both to stay in theoretical control

of the composite sector and also because the electroweak T parameter scales as (Y∗U33)
4.

Now the mixing angles control the partial compositeness phenomenology of SM particles,

yielding deviations from SM predictions. While present top quark tests pose no conflict

with sizeable mixing angles, note that the electroweak symmetry implies

ϕbL
= ϕtL , (7.2)
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tR

T̃ T̃

HH

Q

∼ − 3

4π2
(Y∗U33)

2 (m̃T
∗ )2 sin2 ϕtR log

(

Λ2

m̃T 2
∗

)

Figure 1: One-loop log divergent contribution to the Higgs mass squared from the virtual exchange

of an elementary tR. A circled cross denotes a ∆tR
mass mixing. We used eqs. (5.6), (5.13) to set

∆tR
= m̃T

∗
sinϕtR

, and the fact that additional ∆tR
insertions on the tR elementary propagator are

suppressed for divergent virtual momenta.

and the couplings of bL are very well tested, in particular its coupling to the Z, gLb. Large

values of the mixing angle ϕbL
imply a sizable correction δgLb to the Zbb̄ vertex, as the

calculation of appendix C explicitly shows.

The best one can imagine in easing the tension between the constraint on δgLb and

eq. (7.1) is to satisfy the latter with the smallest possible ϕtL and the largest possible ϕtR .

This has an immediate cost, in that loops involving the elementary tR, such as figure 1,

strongly correct the Higgs mass squared, with composite-strength couplings and without

mixing-angle suppression. For m∗ > TeV, this implies a Higgs fine tuning at the 10 percent

level or worse. This problem reflects a breakdown in our philosophy. For sin ϕtR ∼ O(1),

the separation between an elementary sector weakly coupled to (and weakly mixed with)

a stronger composite sector is lost.

These problems suggest a different scenario. Rather than thinking of tR as an elemen-

tary field strongly coupled to the composites, it makes better sense to posit that the tR
is itself a full chiral member of the composite sector (with no elementary admixture), and

its participation in the composite dynamics is an integral part of generating a light Higgs

multiplet.9 From this viewpoint, quantum loops involving only the tR and other compos-

ites, figure 1, do not contribute to our measure of fine tuning, as discussed in subsection

4.2. With the tR now a full composite, the remaining elementary particles have reasonably

small mixing angles suppressing radiative corrections to the Higgs mass squared, resulting

in mild tuning.

This is the physical picture we will assume from now on. The question is how to

amend our present construction to take this into account. We do this by continuing to use

eq. (5.8) to pursue the phenomenological implications of the model, but we simply take a

composite-tR limit,

sinϕtR = 1 . (7.3)

9This now means that SM gauge anomalies cancel non-trivially between the new elementary and new

composite sectors.
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As discussed above, Higgs fine tuning is then only measured with respect to sensitivity to

mixing angles of the remaining elementary fields.

While Nature might have even heavier composites with the quantum numbers of the

light Higgs, they are not required in our minimal model, and we have not included them.

Similarly, now that tR is a complete composite, which we allow to interact directly with

the Higgs before the diagonalization of section 5, we will no longer need to retain the heavy

Dirac composite excitation with the same quantum numbers, T̃ , in the minimal model

(although again Nature may possess such a state). A minor extra payoff of this is that the

dominant contributions to fine tuning in the Higgs mass will turn out to be UV-finite, that

is there are not even logarithmic divergences. Again, we can continue to utilize eq. (5.8) for

phenomenological investigation, but with the second limit in which we throw away terms

containing T̃ :

T̃ → 0 . (7.4)

In performing low-momentum calculations, we find it useful to work with the lagrangian

before elementary/composite diagonalization, eqs. (3.4), (4.1) and (5.1). The equivalent

tR-compositeness limit in this language is given by

T̃L → 0 , T̃R → tR . (7.5)

8. Higgs fine tuning and finiteness

Let us discuss more in detail about the Higgs fine tuning in the minimal model with

composite tR. As anticipated in the overview, we choose as a measure of tuning the ratio

of the desired Higgs mass squared, m2
h, to the largest 1-loop correction sensitive to the

mixing with the elementary sector,

Fine tuning ∼ m2
h

δm2
h|mixing

. (8.1)

Note that mh denotes the physical Higgs boson mass, not the mass parameter of the Higgs

doublet. The 1-loop correction to the Higgs mass squared from the composite sector alone

is assumed to be reasonably well subsumed into the parameters of the tree-level potential,

V (H), and by assumption does not contribute to fine tuning, as discussed in subsection

4.2.

The corrections δm2
h|mixing from gauge and fermionic fields are most easily computed

in the elementary/composite basis. The relevant Feynman diagrams are those of figure 2.

This choice of basis also makes manifest the central mechanism for cutting off the large

quadratic divergences: the elementary fields only couple to the Higgs via their mass mixing

with the composite fields, and this implies enough propagators to make the loop integral

convergent. Technically, this good behavior reflects the collective-breaking structure of our

model. Physically, it captures the UV form-factor suppression due to partial compositeness.

The computation of the diagrams of figure 2 is straightforward, with the only subtlety

of resumming all possible elementary/composite mass insertions on the elementary prop-

agator. In the case of the elementary tL field, the effect of this resummation is that of
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H H

tR

Q Q

tL

W ∗,B∗ W ∗,B∗

W,B

H HH

W ∗,B∗ W ∗,B∗

W,B

H H

Figure 2: One-loop corrections to the Higgs mass squared in the minimal model with composite

tR adopting the elementary/composite basis. Black squares represent resummation of all higher

elementary/composite mass-mixing.

modifying the propagator to:

i

6p −→ i

6p · 1

1 −
∆2

tL

p2 − (mQ)
2

. (8.2)

The resummed elementary gauge propagator is instead

−i

p2
· 1

1 − M2
∗ tan2 θ

p2 − M2
∗

(

ηµν − pµpν

p2

)

, (8.3)

while the (un-resummed) W ∗, B∗ propagator to be used to compute the gauge diagrams

of figure 2 is the usual one for a vector of mass M∗1, M∗2. We thus obtain, respectively for

the gauge and fermion contribution to the physical Higgs mass squared (after rotating to

the Euclidean),

δm2
h|gauge = − 9 g2

2

16π2

∫ ∞

0

dp p · Fgauge(p
2, θ2,M∗2) (8.4)

+
1

3
· 3

5
(θ2, g2,M∗2 ↔ θ1, g1,M∗1) ,

Fgauge(p
2, θ2,M∗) =

M4
∗ /cos2 θ2

(p2 + M2
∗ ) (p2 + M2

∗ / cos2 θ2)
, (8.5)

δm2
h|fermion =

3

2π2
Y 2

top

∫ ∞

0

dp p · Ffermion(p
2, ϕtL ,mQ

∗33) , (8.6)

Ffermion(p
2, ϕtL ,mQ

∗33) =
(mQ

∗33)
4 cos2 ϕtL

(

p2 + (mQ
∗33)

2 cos2 ϕtL

)(

p2 + (mQ
∗33)

2
)

. (8.7)

All formulas have been expressed in terms of physical mass parameters and mixing angles,

and we have neglected the tree-level Higgs mass for simplicity. The factor of 3/5 in eq. (8.4)

is due to our normalization of the hypercharge. The form factors Ffermion, Fgauge cut off

the quadratic divergences for virtual momenta much larger than the mass of the heavy
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excitations; setting them to 1 gives the divergent SM results. By approximating cos ϕtL = 1,

cos θ1,2 = 1 in the form factors, one obtains

δm2
h|gauge ≃ − 3

32π2

(

3 g2
2 M2

∗2 + g2
Y M2

∗1

)

, δm2
h|fermion ≃ 3

2π2

m2
t

v2
(mQ

∗33)
2 . (8.8)

9. Viable parameter space

While the leading terms in the SM EFT below m∗,M∗ are given by simply setting to zero

all heavy fields in eq. (5.8), the body of precision electroweak and flavor data also constrains

higher-dimension operators obtained by more carefully integrating out the heavy physics.

The most important constraints come from oblique corrections encoded in the Peskin-

Takeuchi S and T parameters [42], modifications of the ZbLb̄L coupling, δgLb, and flavor-

changing four-fermion operators. The leading contributions to S, T and δgLb due to the

exchange of the heavy resonances are computed in the appendix, eqs. (B.1), (B.3) and (C.3).

These simple formulas can be used to identify the viable parameter space, determining

thereby where and how new physics can be produced explicitly in collider searches. Flavor

physics experiments constrain the parameter space in more complex ways, sensitive to

Y∗U,D, and can be neglected in a simple, model-independent analysis. Broadly speaking,

there is a generalized GIM mechanism saving the model from catastrophic failure in regard

to flavor-changing rare processes, which is illustrated in appendix A. Various dedicated

analyses have been carried out in the context of full higher-dimensional warped models [6].

A rough conclusion appears to be that M∗ should be above roughly 2TeV, in particular

M∗3, in order for reasonable flavor ansatze to survive. This agrees and is consistent with

the constraints imposed by the electroweak observables, which we discuss here.

Before beginning this discussion of electroweak observables within our model, we should

make an important qualification in using these results to guide experimental searches for

new physics. First, as noted in subsection 2.10, we expect that our truncated model

calculations can have up to 50 percent corrections in these precision observables compared

to the warped compactifications it is meant to approximate. Secondly, precision electroweak

effects are but a virtual shadow of new physics, which can easily be sensitive to modest non-

minimal physics which we might not anticipate in advance. Therefore in collider searches

for new physics, precision data should be consulted to give a ballpark guide to the viable

parameter space, rather than trusting the sharp boundaries that emerge in analysing any

particular model. For example, the constraint from Zbb̄ can be strongly relaxed if the

SU(2)L × SU(2)R symmetry of the composite sector is enlarged to include a discrete LR

parity, and additional composite states are added [11].

Having issued this warning, we now take our model literally in computing precision

electroweak effects. Let us make the simplifying hypothesis of universal masses M∗, m∗ and

composite couplings g∗. Equations (B.1), (B.3) and (C.3) then express the three precision

observables S, T and δgLb as functions of m∗, M∗, Y∗U33, Y∗D33, and g∗.
10 For definiteness,

10We use the formula of the top Yukawa coupling, eq. (7.1), to express sin ϕtL
in terms of Y∗U33, and

hence mQ
33 in terms of mQ

∗33 and Y∗U33.
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Figure 3: Exclusion curves in the plane (m∗, M∗) for Y∗U33 = 2, 2.5, 3 and Y∗D33/Y∗U33 = 1/2

(left plot) or Y∗D33/Y∗U33 = 1/3 (right plot). The area below each curve is excluded at 99% CL by

a combined fit to the electroweak observables S, T and δgLb.

we set g∗ = 3 and vary the remaining parameters. The body of precision data (see for

example [43, 44]) can then be used to constrain the plane (m∗,M∗) for fixed Y∗U33 and

Y∗D33, provided the Higgs mass mh is also specified. The results are shown in figure 3,

where we used mh = 250 GeV.11

One can see that there is a sizable portion of parameter space that is not ruled out

and that should be accessible at the LHC, as we will discuss more in detail in the next

section. The constraint is stronger on M∗, mainly due to the S parameter and Zbb̄, while

the fermion mass m∗ can be lighter. Lighter masses for the fermionic resonances are also

preferred to keep the residual fine tuning in the Higgs mass small. The estimate of eq. (8.1),

together with eq. (8.8), shows that the level of cancellation in the one-loop correction to

the Higgs mass squared, required to obtain mh = 250 GeV, is not worse than ∼ 10% for

m∗ up to 3 TeV. This means that the viable region of figure 3 is also a natural place for the

parameters of our model. If we use some leniency in interpreting the electroweak constraints

on our model in order to guide searches for the new physics, for the reasons discussed above,

we perhaps should conclude from this exercise simply that the new resonance masses are

likely to be above a TeV (with very mild Higgs fine-tuning).

10. Phenomenology highlights and challenges

The minimal scenario of partial compositeness that emerges from the electroweak precision

tests is particularly challenging for the LHC. Vector excitations are to be at 2-3 TeV or

11In detail, we perform a χ2 test using the fit to S, T and δgLb of ref. [10] with mh = 250 GeV, and

impose a 99% CL bound.
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heavier, while fermions can be lighter, as also suggested by fine-tuning considerations. The

new states are expected to couple strongly to the third-generation SM quarks, but weakly

to the light fermions. This makes them difficult to discover at a hadron collider, though

there are specific processes that are particularly promising.

Partial compositeness predicts a quite well determined pattern of new physics at the

LHC, whose key features are robust and do not depend on the details of the models.

Perhaps the most relevant exception to this rule comes in the phenomenology of the heavy

fermions, where two qualitatively different scenarios can arise, depending on whether flavor

mixing effects in the composite sector are large or not. We will start by considering first

the case in which flavor-changing effects in the composite Yukawa matrices Y∗ are small,

and then see how the phenomenology changes by relaxing this hypothesis.

10.1 Heavy gauge boson production and decays

The most effective strategy to discover the new particles can be deduced by looking at the

magnitude of their couplings in the Lagrangian (5.8). Heavy excitations of the SM gauge

bosons, ρ∗, couple to the SM fermions with strength

g
(

sin2 ϕ cot θ − cos2 ϕ tan θ
)

,

as one can see from the second line of eq. (5.10). In the case of light SM fermions the first

term is highly suppressed, since ϕ ≪ 1, and the whole interaction is accounted for by the

second term. The latter is due to the (universal) A−ρ mixing and it is still suppressed by a

factor tan θ ≃ (g/g∗) compared to SM couplings. By contrast, third-generation quarks have

a large mixing angle ϕ and the first term dominates. The coupling of ρ∗ to the longitudinal

polarizations of the SM weak bosons is also strong, the latter being composite degrees of

freedom. It can be extracted, in the unphysical basis and using the Equivalence theorem,

from the second line of eq. (5.11): g cot θ ≃ g∗. Producing and detecting the heavy vectors

will be challenging for the LHC due to their small couplings to light fermions. Single

production mainly proceeds via Drell-Yan scattering

q q̄ −→ ρ∗ .

Electroweak heavy excitations W ∗±, W ∗ 3, B∗ 12 can also be produced via weak boson

fusion, as in technicolor theories. Despite the large coupling to longitudinal W ’s and Z’s,

this process is subdominant for large masses M∗ & 2-3 TeV, as well as other production

mechanisms like gluon fusion, tt̄ and tb̄ associated productions.13 Once produced, the

heavy vectors will mainly decay to pairs of third-generation SM quarks, tt̄, bb̄ or tb̄, and

pairs of longitudinally polarized SM vector bosons, ZLh, W+
L W−

L or W±
L ZL. Decays to

light SM quarks and leptons will instead be rare. When kinematically allowed, also decays

to one SM top or bottom plus one excited top or bottom quark (T t̄, T b̄ etc.), or even to

12Here and in the following we classify the new vectors using their SU(2)L quantum numbers, since the

EWSB effects are small, see section 6.
13K.Agashe, private communication.
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any two heavy fermions will be important, thanks to their large couplings to the excited

vectors (first terms of third and fourth lines in eq. (5.10)).

In the case of the electroweak heavy vectors W ∗±, W ∗ 3, B∗, it is very useful to com-

pare our scenario with Little Higgs (LH) models, for which numerous and detailed studies

exist in the literature [45 – 49]. In fact, the structure of the gauge sector of LH models

based on product groups (and without T-parity) is similar to that prescribed by partial

compositeness: the product of two SU(2) × U(1) groups is broken down spontaneously to

the diagonal subgroup (the latter being identified with the SM symmetry), and the SM

fermions transform under only the first gauge group. This is analogous to the elemen-

tary/composite mixing of section 5, considering that the SM light fermions are almost

completely elementary, and as such their couplings to the composite gauge bosons are

strongly suppressed. In particular, the mixing angles between the two SU(2)×U(1) groups

of the LH theories, θLH , directly map into our parameters θ.14 This implies that in our

model the production cross section for W ∗± and W ∗ 3 (as well as their decay widths to

light fermions), will be the same as that for the heavy vectors of Little Higgs models (see

refs. [45, 46]).15 On the other hand, the pattern of decays will be quite distinct in the two

cases. In LH theories the couplings of W ∗ to the various SM fermions are predicted to be

either strictly universal (in product group models), or comparable in size (in simple group

models). Partial compositeness, instead, predicts larger couplings to the third generation

SM quarks, so that tt, bb and tb channels will have larger branching ratios. For example,

in the case of W ∗ 3 one has:

Γ(W ∗ 3 → qq̄) = 3Γ(W ∗ 3 → ll̄) ≃ g2
2 tan2 θ2

32π
M∗ , (10.1)

Γ(W ∗ 3 → tt̄) = Γ(W ∗ 3 → bb̄) =
(

sin2 ϕtL cot θ2 − cos2 ϕtL tan θ2

)2 g2
2

32π
M∗ ,

Γ(W ∗ 3 → Zh) = Γ(W ∗ 3 → W+W−) =
g2
2 cot2 θ2

192π
M∗ ,

Γ(W ∗ 3 → T t̄) = Γ(W ∗ 3 → Bb̄) =
g2
2 sin2 ϕtL cos2 ϕtL

64π sin2 θ2 cos2 θ2

M∗

×
(

1 − m2
∗

M2
∗

)(

1 +
3

2

m2
∗

M2
∗

+
1

2

m4
∗

M4
∗

)

,

Γ(W ∗ 3→χqχ̄q)=3Γ(W ∗ 3→χlχ̄l) =
g2
2

32π

[

(

cos2 ϕtL cot θ2−sin2 ϕtL tan θ2

)2
+cot2 θ2

]

×M∗

√

1 − 4
m2

∗

M2
∗

(

1 + 3
m2

∗

M2
∗

+ 10
m4

∗

M4
∗

)

,

where q (l) stands for any SM light quark (lepton) and χq = Ui,Di, χl = Ni, Ei for any

14More precisely, the correspondence is θLH = θ in the convention of ref. [47], while θLH = π/2 − θ in

the notation of refs. [45, 46, 48, 49].
15Notice also that the electroweak precision data from LEP favor the region of parameter space of Little

Higgs models where the second SU(2) × U(1) becomes strong, tan θLH ≪ 1, and four-fermion contact

interactions are thus suppressed [44, 50] (for more references on LH models and precision tests, see the

review [35]). In other words, the region of parameter space where LH models pass the precision tests

corresponds to that motivated by the partial compositeness paradigm.
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flavor i. The first identity in the third equation follows from the Equivalence theorem: as

pointed out above, final SM gauge bosons are almost completely longitudinally polarized.

Naively, the LHC discovery reach in the channels ll̄, lν and Zh, WW , WZ will be

similar, though not identical, to that derived in ref. [48] for the Littlest Higgs model [51].

In particular, the larger couplings to pairs of SM bosons and third-generation SM quarks

imply a smaller branching fraction to the clean leptonic channels ll̄. Despite the large

branching ratio, tt and bb events will be certainly challenging to isolate over the huge

SM background. On the other hand, detecting a large violation of flavor universality, as

predicted in our model, would represent a first significant hint of partial compositeness.

The Tt, Bb, Tb, Bt channels should be easier to detect over the background, thanks to

the richer final state.16 If kinematically allowed, the decays to two heavy fermions would

be instead extremely spectacular , especially those of W ∗±, W ∗ 3, B∗ to a pair of heavy

leptons, which would translate to quite distinctive leptonic final states.

Ideally, one would like to measure several of these channels, in order to extract all the

parameters and test the model. In the case of the W ∗ 3, for example, one can extract θ2 and

ϕtL by counting the number of events in any two of the final states of eq. (10.1); measuring

a third channel then allows one to test the structure of the model. This ideal strategy must

however confront with the difficulty of the actual experimental measurements. Quite likely,

disentangling and measuring all the various parameters will be a hard task. A minimal

strategy to verify the model after the discovery and discriminate it from other scenarios

could be checking the relation:

g2
HHρ∗ = (g cot θ)2 = gHHρ∗ρ∗ , (10.2)

which is a direct consequence of the Higgs compositeness plus partial compositeness in the

gauge sector. Similar tests have been also proposed for LH theories, see refs. [45, 46]. The

second equality in eq. (10.2) is certainly harder to verify, due to the difficulty in measuring

the coupling gHHρ∗ρ∗ . The latter can be extracted from the associated production qq̄ →
ρ∗ → ρ∗V , with V = h,WL, ZL.

Another unique feature of the partial compositeness scenario, as compared to other

models like LH theories, is the existence of heavy excitations of the gluon. They will have

a larger cross section than the neutral weak excitations and will decay exclusively to tt, bb

and Tt, Bb final states (and to two excited quarks if kinematically allowed). Very recently,

ref. [52] has made an in-depth study of the tt channel and shown how to exploit a left-right

polarization asymmetry, deriving from ϕtR > ϕtL , to efficiently extract the signal above

SM background for gluon excitations of several TeV. As explained above, we expect the

Tt, Bb channels to be also favorable for detection, though a detailed study is needed.

Discovering the heavy vectors ρ̃ at the LHC will be instead much more difficult, because

in their case there is no analog of the A − ρ mixing, and their couplings to the light

fermions are extremely suppressed. The associated production qq̄ → ρ∗ → ρ̃V , where

V = h,WL, ZL, via a virtual or possibly real ρ∗, seems to be the most promising process,

though a detailed study is again required.

16As we will discuss in detail below, heavy fermions mainly decay to a third-generation SM quark plus a

longitudinally polarized gauge boson.
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10.2 Heavy fermions production and decays

If they are light enough, heavy excitations of the SM quarks will be pair produced at the

LHC via QCD interactions:

gg , qq̄ → χχ̄ , (10.3)

and similarly for χ̃. The cross section of these processes is completely determined as a

function of the mass m∗ of the new particle, and falls off quickly as m∗ increases (see for

example refs. [46, 48]). An additional contribution comes from the exchange of a gluon

excitation (similar diagrams with the exchange of a W ∗ or a B∗ are also possible, but

smaller):

qq̄ → G∗ → χχ̄ , χ̃ ¯̃χ , (10.4)

where G∗ can be real, if kinematically allowed. As discussed in the previous section,

the electroweak precision tests directly constrain the mass of the top and bottom quark

excitations, disfavoring values smaller than roughly 1.5 TeV. For such heavy masses, pair

production of these states becomes small at the LHC. On the other hand, these same states

couple strongly to their SM counterpart, and can be singly produced.

In the case of T̃ and B̃, an important role is played by bW and bZ fusion [53], where

a bottom quark from one proton scatters off a longitudinal W or Z radiated by a quark

from the other proton:

bLWL → T̃ , λT̃ = Y∗U33 sin ϕbL
cos ϕtR = Ytop cot ϕtR , (10.5)

bLZL → B̃ , λB̃ = Y∗D33 sin ϕbL
cos ϕbR

= Ytop
Y∗D33

Y∗U33

cos ϕbR

sin ϕtR

(10.6)

The same production mechanism has been discussed and studied in the context of Little

Higgs models [46 – 48]. In order to make the comparison with the LH results easier, in

eq. (10.5) we have written the couplings relevant to each process, (they can be deduced

from eq. (5.11) by making use of the Equivalence theorem).17 If tR is strongly coupled

to the composite sector, sin ϕtR ≃ 1, then λT̃ is small and the single production of T̃ is

suppressed. In fact, in the extreme limit in which tR is part of the composite sector, a heavy

state T̃ is not required and we therefore removed it from our minimal model in section 7.

The production rate of B̃ is instead expected to be sizable, since its coupling is large for tR
composite and bR almost elementary: λB̃ ≃ Ytop (Y∗D33/Y∗U33) ≈ 1. In the case of T and

B, single production via bW , bZ fusion will be extremely small if bR is almost elementary,

and its couplings to the new states are weak. The analogous processes initiated by a tR,

tRZL → T , tRWL → B , λT = λB = Y∗U33 sin ϕtR cos ϕtL = Ytop cot ϕtL , (10.7)

might be large enough to be seen at the LHC, since the small top quark content of the

proton can be compensated by the large coupling [9]: cot ϕtL ≫ 1 for tR composite. A

detailed analysis is however required. Single production of B’s also proceeds via g bL → B,

17For comparison, the heavy SU(2)L singlet predicted by the Littlest Higgs model couples with strength

λ = Ytop λ1/λ2, where λ1/λ2 ∼ 1.

– 28 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
4

as the effect of the dimension-5 operator gµνB̄σµνb generated by loops of top quarks.

Finally, the associated production of a heavy χ = T,B or χ̃ = T̃ , B̃ together with a SM

top or bottom quark is also possible (ψ = t, b):

qq̄ → ρ∗ → χψ , χ̃ψ , (10.8)

where ρ∗ = G∗,W ∗,B∗ can be real. It is worth stressing that these processes, as well as all

the other single production mechanisms, are strongly suppressed in the case of the excita-

tions of SM light quarks, due to their small couplings to the composite sector. For them,

only pair production will be viable. The same conclusion also applies to heavy leptonic

resonances, with the difference that they can only be pair produced via the exchange of

SU(2)L × U(1)Y carriers.18

The decays of T , B, T̃ , B̃ proceed through the same interaction vertices and couplings

responsible for their production. The SU(2)L singlets T̃ and B̃ decay to a top or bot-

tom quark plus a longitudinal SM boson or a Higgs, with branching ratios fixed by the

Equivalence theorem:

Γ(T̃ → th) = Γ(T̃ → tZ) =
1

2
Γ(T̃ → bW ) =

λ2
T̃

64π
m̃∗ , (10.9)

Γ(B̃ → bh) = Γ(B̃ → bZ) =
1

2
Γ(B̃ → tW ) =

λ2
B̃

64π
m̃∗ . (10.10)

In addition to the above channels, the T̃ or B̃ can also decay to a T , B if kinematically

allowed. If the difference is mass between the two resonances is not too small, the eventual

phase-space suppression can be compensated by the larger coupling involved: Y∗U,D. For

example, if sufficiently heavier, a B̃ could decay to a T (B) by emitting a WL (ZL). This

would represent a source of T ’s and B’s, which might be otherwise difficult to produce, as

we have seen. Furthermore, if T̃ , B̃ undergo a decay chain instead of directly decaying to

SM quarks, this leads to richer final states, which will be presumably easier to isolate over

the SM background.

As already noticed in the literature [54, 48, 49], detecting the neutral-current decays of

eq. (10.9) would distinguish T̃ and B̃ from a fourth generation of quarks, though it would

not be a smoking gun of partial compositeness. More peculiar to our scenario are the

decays of T and B: in the motivated case of bR almost elementary, the only unsuppressed

channels are:

Γ(T → th) = Γ(T → tZ) =
λ2

T

64π
m∗ , Γ(B → tW ) =

λ2
B

32π
m∗ , (10.11)

plus eventually the analogous decays to T̃ , B̃, if kinematically allowed. Detecting only final

states with top and no bottoms quarks from T and B would then be compelling evidence of

partial compositeness and its mechanism for explaining the hierarchies in the SM Yukawas.

On the other hand, directly checking the mechanism responsible for the cancellation of the

18Clearly, there is no analog of the processes (10.5) and (10.7) in the case of the heavy leptons, though

they could be singly produced in the decays of W ∗ and B
∗ if they had large couplings.
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quadratic divergence in the top loop will be challenging. A possible test in the case of tR
composite consists in verifying the relation

λT = Ytop cot ϕtL , (10.12)

by using the value of ϕtL extracted, for example, from the decays of ρ∗. Determining λT is

challenging but perhaps feasible. Extracting it from the total decay width is limited by the

jet mass resolution [47], but may be possible for sufficiently large λT and m∗. Alternatively,

one could use the production rate in the tW , tZ fusion channels, if they are observed at

LHC, although the theoretical error due to the uncertainties in the parton distribution

functions will be probably large. Notice that measuring a large value for λT would be itself

a very important demonstration of top compositeness.

The scenario we have described so far assumes that flavor mixings in the composite

sectors, induced by the off-diagonal entries of Y∗ in flavor space, are small. If this is the

case, another evidence for partial compositeness could come from the production of the

excitations of light quarks and leptons. Under the hypothesis of small flavor mixing in the

composite sector, these heavy states are expected to be narrow resonances: they will decay

to their SM counterpart plus a longitudinally weak boson or a Higgs, with much smaller

couplings compared to those of eqs. (10.9), (10.11). Most likely, flavor-changing decays

to top and bottoms will also have sizable branching ratios, since the flavor suppression

can be compensated by the larger coupling of the top and bottom to the composites. In

the leptonic sector, pair production of the heavy leptons would give rise to spectacular

signatures, by decaying to ultra-energetic SM leptons with essentially no SM background.

In the opposite, extreme limit of anarchic Y∗, flavor mixing effects among the composite

fermions will be large. Single production of the heavy quark excitations will still proceed

as discussed above, namely through a bottom or possibly a top quark from the proton, but

the heavy T , B, T̃ , B̃ produced in this way will easily mix with the excitations of the light

quarks. These latter, on the other hand, will not decay anymore to light SM quarks, since

it will be more convenient for them to change their flavor and decay to tops and bottoms.

This scenario will then be distinguishable from the previous one for the absence of final

states with light jets arising from the pair production of the first and second family quark

excitations. Similar considerations in the case of pair production of heavy leptons show

that these will mainly decay to taus, while muons and especially electrons in the final state

will be rare.

We conclude by mentioning that the quark heavy excitations will produce also indirect

effects, some of which might be spectacular, depending on the mass of the new particles.

Important examples are a possible large modification to the Higgs production cross section

via gluon fusion, and large shifts in the couplings of the top quark to the SM weak bosons.
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A. Generalized GIM mechanism for FCNCs

Rather than re-discussing all the incarnations of partial compositeness in the phenomenol-

ogy of low-energy flavor-changing processes, we will study just one class of examples to

illustrate how the GIM mechanism of the SM is generalized in protecting against excessive

flavor-changing neutral currents (FCNC’s). The reader will thereby easily see how to com-

pute other flavor-violating rare processes of interest from the Lagrangian of eq. (5.10). We

will focus here on four-fermion operators of the form

LFCNC = Aijmn

(

d̄LiλaγµdLj

) (

d̄Rmλaγ
µdRn

)

, (A.1)

arising by integrating out the exchange of an excited gluon, G∗, as in figure 4. The indices

i, j,m, n = 1, 2, 3 are generational, while λa are the SU(3) Gell-Mann matrices with the

normalization of Tr(λaλb) = 2 δab.

Using the Lagrangian of eq. (5.10), figure 4 yields (we consider only flavor-non-universal

terms and work at leading order in θ3)

Aijmn ≃ −g2
3 cot2 θ3

4M2
∗

δijδmn (sin2ϕdL
)i(sin

2ϕdR
)m , (A.2)

but it must be borne in mind that this is in the gauge-eigenstate basis prior to EWSB.

After EWSB, FCNCs will emerge upon converting to the mass-eigenstate basis as usual.

Denoting by SdL
, SdR

the 3×3 unitary transformations of the left- and right-handed down

quarks that diagonalize the down-quark mass matrix, we have that in the mass-eigenstate

basis

Aijmn ≃ −g2
3 cot2 θ3

4M2
∗

(SdL
)†ki(SdL

)kj (sin2ϕdL
)k (sin2ϕdR

)l (SdR
)†lm(SdR

)ln . (A.3)

We can then see how the generalized flavor protection works for the lighter fermions. Flavor-

changing neutral currents arise via SdL
, SdR

, but also depends on the partial compositeness
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W W ∗ B∗ B

< H >< H >

Figure 5: Tree-level contribution to S.

< H >< H > < H >< H >

W W ∗ W ∗,B∗, W̃ , B̃ W ∗ W

Figure 6: Tree-level contribution to T . The SU(2)L×SU(2)R invariance of the composite gauge

sector ensures that this contribution exactly vanishes.

W3 W ∗
3

W ∗
3 W3

T T̄T

t̄R

tR
< H > < H >

< H >< H >

Figure 7: One-loop dominant contribution to T .

of the fermions, (sin ϕdL
)i, (sin ϕdR

)i 6= 0. The lighter fermions are mostly elementary, with

weak couplings to the Higgs, |(ϕdL,R
)i| ≪ 1. Thus FCNCs are suppressed the lighter the

fermions involved.

B. Oblique corrections

The leading oblique corrections can be parametrized by the Peskin-Takeuchi S and T

parameters [42]. One useful aspect of these variables is that they are defined directly in

terms of vacuum polarizations, rather than in terms of corrections to the physical SM gauge

couplings. This is done by adopting an oblique field basis, which is precisely the basis in
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which all the universal corrections to the gauge couplings of the SM light fermions can be

encoded in the electroweak vacuum polarizations. Quite interestingly, the oblique basis

of Peskin and Takeuchi essentially coincides with the elementary/composite basis, apart

from highly-suppressed corrections due to the small composite component of the physical

light fermions. This means that the new-physics contributions to these variables can be

obtained more readily by using the Lagrangian before mass-diagonalization.

The leading new-physics contribution to the S parameter is given by the mixing dia-

gram of figure 5, and yields

S = 4πv2

(

1

M2
∗1

+
1

M2
∗2

)

. (B.1)

We can already foresee one central feature of the spectrum relevant for the LHC: the

composite vector mesons must be quite heavy, M∗ & 2.3 TeV in order to keep S . 0.3, as

required at the 99% CL by the precision data (see for example [44]).

The tree-level contribution to the T parameter is given by the diagram of figure 6,

but the custodial symmetry of the composite sector implied by the [SU(2)L ⊗ SU(2)R]comp

global invariance ensures that there is a complete cancellation:

T = 0 at tree level . (B.2)

In fact, the suppression of T at the tree level by a custodial isospin symmetry is the

motivation for extending the composite gauge group. The custodial symmetry of the

composite gauge sector is however spoiled at the loop level, since all composite fermions

are singlets of [SU(2)R]comp and their Yukawa couplings to the Higgs break explicitly the

custodial symmetry. The dominant one-loop contribution to the T parameter is given by

the diagram of figure 7, which gives

T =
2

3
T top

SM

(

Y 2
∗U33

Ytop

)2
(

v

mQ
33

)2

, (B.3)

where

T top
SM =

3

16π sin2 θw cos2 θw

m2
t

m2
Z

≃ 1.2 . (B.4)

C. Non-universal corrections: Z → bLb̄L

Non-universal effects are most important for the quarks of the third generation, since

these are the fermions with the largest mixing with the composite sector. In particular,

the strongest constraint comes from the ZbLb̄L coupling, which has been quite precisely

measured by LEP and SLD experiments. We follow the usual convention and define the

left-handed coupling gLb so that its SM value at tree level is gLb = T 3L − Q sin2 θw. After

EWSB gLb receives a correction due to the mixing of bL with the heavy electroweak singlet

B̃. This shift is of the form

δgLb = sin2 ξ
(

T 3L(B̃) − T 3L(bL)
)

, (C.1)
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bL

b̄L

B̄

B
< H >< H >

W ∗,B∗, B̃ W ∗,B∗
Z

Figure 8: Tree-level contributions to δgL from the exchange of gauge excitations, in the insertion

approximation. A circled cross denotes a mass mixing.

where T 3L(B̃) = 0, and the mixing angle ξ between bL and B̃L can be extracted from the

mass matrix (6.4). At leading order in (v sin ϕbL
Y∗D33/m̃

B
∗ ) we obtain:

ξ ≃ Y∗D33

m̃B
∗

v√
2

sinϕbL
cos ϕbR

. (C.2)

Another correction to gLb comes from the mixing of the Z with W ∗3, B∗ and B after

EWSB. This shift is most conveniently computed adopting the elementary/composite basis,

and working for simplicity at leading order in the elementary/composite mass insertions

(∆bL
/mQ) and (gel/g∗). The leading contribution is given by the diagram of figure 8,

which, added to the fermionic one, leads to (for tR fully composite)

δgLb ≃
1

2

(

Y∗D33

Y∗U33

)2 (

mt

m̃B
∗

)2

+
1

4

(

mt

M∗2

)2 (

g∗2
Y∗U33

)2

. (C.3)

D. Explicit gauge-invariance breaking and UV cutoff

While our model’s defining Lagrangian has all explicit couplings and mass parameters

with non-negative mass dimensions (naively a check of renormalizability), the model is still

non-renormalizable because M∗, Y∗ and the mixing masses explicitly break the composite

and elementary gauge symmetries, preserving only the subgroup of SM gauge symmetries.

Therefore, the quantum theory becomes strongly coupled in the UV and there is a maximal

energy, ΛUV before losing perturbative control. In this appendix we estimate this effective

UV cutoff on the consistency of our model and show that it is well above the energies we

wish to study. Of course, cutoff physics can also appear virtually in precision effects, but

these will be suppressed relative to M∗-scale contributions by O(M2
∗ /Λ2

UV ).

The strongest couplings arise from the composite sector, so for the present exercise we

focus on this sector exclusively, in particular the breaking of composite gauge invariance due

to M∗, Y∗. We can always imagine that the composite Lagrangian is just the unitary gauge

representation of a new Higgs mechanism (distinct from the electroweak Higgs mechanism
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of course). One can “go back” to the un-gauge-fixed theory by performing a general

gauge transformation, of general form exp(iΠ(x).T /F∗), on the composite Lagrangian,

and interpreting the spacetime-dependent parameters Π(x) as the eaten Goldstone bosons.

For example,
M2

∗

2
ρ2

µ → M2
∗

g2
∗

|DµeiΠ.T /F∗ |2, (D.1)

the leading term in a now explicitly non-renormalizable (gauged) chiral Lagrangian. The

Goldstone bosons, Π(x), are canonically normalized if we take their “decay constant”, F∗,

to satisfy

M∗ =
g∗F∗

2
. (D.2)

We can now use naive dimensional analysis [55] to estimate when the non-renormalizable

interactions become non-perturbatively strong. The standard result for the non-

renormalizable chiral Lagrangian is

ΛUV ∼ 4πF∗ =
8πM∗

g∗
, ΛUV ≫ M∗ for g∗ ≪ 4π . (D.3)

Similarly, the un-gauge-fixed composite Yukawa coupling is of the general form

Y∗χ̄Hχ̃ → Y∗χ̄HeiΠ.T /F∗χ̃. (D.4)

Such a non-renormalizable coupling renormalizes itself (at two-loop order). For the diver-

gent loop corrections to be weaker than the tree coupling, the cutoff must satisfy

Y 3
∗ Λ2

UV

(16π2)2F 2
∗

< Y∗. (D.5)

The implied cutoff, ΛUV < 16π2F∗/Y∗, is subdominant to eq. (D.3).

We conclude that our model is a weakly coupled non-renormalizable effective field

theory up to an energy scale given roughly by eq. (D.3), which is over 10 TeV for the

parameter range of interest.

E. Randall-Sundrum graviton and radion excitations

The model we have presented in this paper is the minimal one realizing the partial com-

positeness of SM fields. The original Randall-Sundrum warped compactification model [1]

focussed instead on the presence of observable graviton excitations at the TeV scale, needed

to realize partial compositeness of the ordinary massless graviton. We have not included

the lightest graviton excitation because the massless graviton is itself too weakly coupled

to be relevant at particle colliders and because the more strongly coupled graviton excita-

tion is SM-neutral and less important in the face of so many SM-charged excitations, as

in warped compactifications with “bulk” SM fields. The original Randall-Sundrum model

also possessed a light SM-neutral “radion” scalar, although its presence is dependent on

details of stabilization of the size of the warped compactification, so again we have not

included it thus far. Moreover, it is not needed to realize partial compositeness of just
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the SM. However, both the graviton and radion excitations have interesting properties and

may be visible at colliders, and therefore deserve further consideration. We briefly indicate

how they are to be included in the present context.

From the compositeness viewpoint, the graviton and radion excitations are pure spin-2

and spin-0 composites respectively. (There is entirely negligible mixing with the massless

elementary graviton.) They are included in our model by modifying the composite sector

and mixing terms,

Lcomposite + Lmixing →
√
−G

{

L̃composite + L̃mixing + 2M2
P l∗R

}

− M2
∗

4

(

1 +
φ

F

)4
(

HµνH
µν − Hµ

µHν
ν

)

+

(

1

2
+

12M2
P l∗

F 2

)

(∂µφ)2 − VGW (φ) .

(E.1)

The first line is generally coordinate invariant with respect to a “metric” field

Gµν ≡
(

ηµν +
Hµν

MP l∗

)(

1 +
φ

F

)2

, (E.2)

which houses both the symmetric Lorentz-tensor graviton field, Hµν , and the radion scalar,

φ. The L̃ terms are minimally coupled to the metric, while the R term is the Ricci scalar

term made from Gµν , acting as a kinetic term for the graviton. In this field normalization,

the graviton “Planck mass” parameter of several TeV controls the coupling of the graviton

to itself and other fields. The second line however breaks the general coordinate invariance,

by the graviton “Pauli-Fierz” mass term [56], with mass M∗ > TeV, a radion kinetic term

(not coupled to the graviton), and a radion potential. The radion kinetic term appears

peculiarly normalized because it also gets a contribution from the R term on the first line.

The deconstructed form of the light Randall-Sundrum graviton excitation was proposed

in ref. [57]. From the compositeness viewpoint it relates [58] to the strong interactions

approach of Tensor Meson Dominance [59].

If we turn off all the elementary sector fields as well as VGW , and focus on the composite

sector alone, the radion field is coupled consistently with it being the Goldstone boson of

spontaneous conformal-symmetry breaking in the composite sector. This is the composite

dynamics dual role of the Randall-Sundrum radion [21, 60]. That is, the physical picture is

that the composite sector is strongly coupled but conformally-invariant until this conformal-

symmetry breaking at a scale F , below which the composites are generally massive, but

coupled to the massless Goldstone boson, φ. The radion potential,

VGW =
1

2
m2

φφ2 + µφφ3 + λφφ4 , (E.3)

represents a weak explicit breaking of the Goldstone symmetry as exemplified in the

Randall-Sundrum context by the well-known Goldberger-Wise (GW) stabilization mecha-

nism [61].

There is a standard subtlety in coupling the (composite) fermions to the graviton

excitation, in that one cannot work in terms of a metric field, but rather must use a

vierbein,

E a
µ = δ a

µ + H̃ a
µ , (E.4)
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which is related to the metric field by

Gµν ≡ ηabE
a

µ E b
ν . (E.5)

In standard fashion, both metric and vierbein house the same physical graviton field,

plus extra off-shell degrees of freedom, but the (more cumbersome) vierbein is useful for

covariantizing fermion kinetic terms.

With the above modification of the composite and mixing Lagrangians, the reader can

easily derive the couplings of the SM and the SM-charged excitations to the radion and

graviton. Note that some of the most important couplings of the radion to the SM fields

will appear at the loop level. For example, it is straightforward to check that after mass

diagonalization the radion-gluon-gluon coupling vanishes classically, but it is generated via

quantum loops of heavy colored excitations.
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